Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Ecol Resour ; 24(2): e13906, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041546

RESUMO

Age is necessary information for the study of life history of wild animals. A general method to estimate the age of odontocetes is counting dental growth layer groups (GLGs). However, this method is highly invasive as it requires the capture and handling of individuals to collect their teeth. Recently, the development of DNA-based age estimation methods has been actively studied as an alternative to such invasive methods, of which many have relied on used biopsy samples. However, if DNA-based age estimation can be developed from faecal samples, age estimation can be performed entirely non-invasively. We developed an age estimation model using the methylation rate of two gene regions, GRIA2 and CDKN2A, measured through methylation-sensitive high-resolution melting (MS-HRM) from faecal samples of wild Indo-Pacific bottlenose dolphins (Tursiops aduncus). The age of individuals was known through conducting longitudinal individual identification surveys underwater. Methylation rates were quantified from 36 samples collected from 30 individuals. Both gene regions showed a significant correlation between age and methylation rate. The age estimation model was constructed based on the methylation rates of both genes which achieved sufficient accuracy (after LOOCV: MAE = 5.08, R2 = 0.33) for the ecological studies of the Indo-Pacific bottlenose dolphins, with a lifespan of 40-50 years. This is the first study to report the use of non-invasive faecal samples to estimate the age of marine mammals.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Animais Selvagens , DNA , Fezes , Metilação
2.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935115

RESUMO

Climatic changes have caused major environmental restructuring throughout the world's oceans. Marine organisms have responded to novel conditions through various biological systems, including genomic adaptation. Growing accessibility of next-generation DNA sequencing methods to study nonmodel species has recently allowed genomic changes underlying environmental adaptations to be investigated. This study used double-digest restriction-site associated DNA (ddRAD) sequence data to investigate the genomic basis of ecotype formation across currently recognized species and subspecies of bottlenose dolphins (genus Tursiops) in the Southern Hemisphere. Subspecies-level genomic divergence was confirmed between the offshore common bottlenose dolphin (T. truncatus truncatus) and the inshore Lahille's bottlenose dolphin (T. t. gephyreus) from the southwestern Atlantic Ocean (SWAO). Similarly, subspecies-level divergence is suggested between inshore (eastern Australia) Indo-Pacific bottlenose dolphin (T. aduncus) and the proposed Burrunan dolphin (T. australis) from southern Australia. Inshore bottlenose dolphin lineages generally had lower genomic diversity than offshore lineages, a pattern particularly evident for T. t. gephyreus, which showed exceptionally low diversity. Genomic regions associated with cardiovascular, musculoskeletal, and energy production systems appear to have undergone repeated adaptive evolution in inshore lineages across the Southern Hemisphere. We hypothesize that comparable selective pressures in the inshore environment drove similar adaptive responses in each lineage, supporting parallel evolution of inshore bottlenose dolphins. With climate change altering marine ecosystems worldwide, it is crucial to gain an understanding of the adaptive capacity of local species and populations. Our study provides insights into key adaptive pathways that may be important for the long-term survival of cetaceans and other organisms in a changing marine environment.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Ecossistema , Ecótipo , Cetáceos , Genômica
3.
Genes (Basel) ; 14(9)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37761836

RESUMO

The last decade has witnessed dramatic improvements in whole-genome sequencing capabilities coupled to drastically decreased costs, leading to an inundation of high-quality de novo genomes. For this reason, the continued development of genome quality metrics is imperative. Using the 2016 Atlantic bottlenose dolphin NCBI RefSeq annotation and mass spectrometry-based proteomic analysis of six tissues, we confirmed 10,402 proteins from 4711 protein groups, constituting nearly one-third of the possible predicted proteins. Since the identification of larger proteins with more identified peptides implies reduced database fragmentation and improved gene annotation accuracy, we propose the metric NP10, which attempts to capture this quality improvement. The NP10 metric is calculated by first stratifying proteomic results by identifying the top decile (or 10th 10-quantile) of identified proteins based on the number of peptides per protein and then returns the median molecular weight of the resulting proteins. When using the 2016 versus 2012 Tursiops truncatus genome annotation to search this proteomic data set, there was a 21% improvement in NP10. This metric was further demonstrated by using a publicly available proteomic data set to compare human genome annotations from 2004, 2013 and 2016, which showed a 33% improvement in NP10. These results demonstrate that proteomics may be a useful metrological tool to benchmark genome accuracy, though there is a need for reference proteomic datasets across species to facilitate the evaluation of new de novo and existing genome.


Assuntos
Golfinho Nariz-de-Garrafa , Proteômica , Animais , Humanos , Golfinho Nariz-de-Garrafa/genética , Proteínas , Genoma Humano , Espectrometria de Massas
4.
Nat Commun ; 14(1): 4020, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463880

RESUMO

Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.


Assuntos
Golfinho Nariz-de-Garrafa , Genética Populacional , Animais , Genômica , Paleontologia , Golfinho Nariz-de-Garrafa/genética , Ecossistema
5.
Mol Ecol ; 32(14): 3826-3841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173858

RESUMO

Bottlenose dolphins (Tursiops spp.) are found in waters around Australia, with T. truncatus typically occupying deeper, more oceanic habitat, while T. aduncus occur in shallower, coastal waters. Little is known about the colonization history of T. aduncus along the Western Australian coastline; however, it has been hypothesized that extant populations are the result of an expansion along the coastline originating from a source in the north of Australia. To investigate the history of coastal T. aduncus populations in the area, we generated a genomic SNP dataset using a double-digest restriction-site-associated DNA (ddRAD) sequencing approach. The resulting dataset consisted of 103,201 biallelic SNPs for 112 individuals which were sampled from eleven coastal and two offshore sites between Shark Bay and Cygnet Bay, Western Australia. Our population genomic analyses showed a pattern consistent with the proposed source in the north with significant isolation by distance along the coastline, as well as a reduction in genomic diversity measures along the coastline with Shark Bay showing the most pronounced reduction. Our demographic analysis indicated that the expansion of T. aduncus along the coastline began around the last glacial maximum and progressed southwards with the Shark Bay population being founded only 13 kya. Our results are in line with coastal colonization histories inferred for Tursiops globally, highlighting the ability of delphinids to rapidly colonize novel coastal niches as habitat is released during glacial cycle-related global sea level and temperature changes.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Austrália , Austrália Ocidental , Genômica , Ecossistema
6.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146656

RESUMO

Cetacean poxviruses (CePVs) cause 'tattoo' skin lesions in small and large cetaceans worldwide. Although the disease has been known for decades, genomic data for these poxviruses are very limited, with the exception of CePV-Tursiops aduncus, which was completely sequenced in 2020. Using a newly developed pan-pox real-time PCR system targeting a conserved nucleotide sequence located within the Monkeypox virus D6R gene, we rapidly detected the CePV genome in typical skin lesions collected from two Peruvian common bottlenose dolphins (Tursiops truncatus) by-caught off Peru in 1993. Phylogenetic analyses based on the sequencing of the DNA polymerase and DNA topoisomerase genes showed that the two viruses are very closely related to each other, although the dolphins they infected pertained to different ecotypes. The poxviruses described in this study belong to CePV-1, a heterogeneous clade that infects many species of dolphins (Delphinidae) and porpoises (Phocoenidae). Among this clade, the T. truncatus CePVs from Peru were more related to the viruses infecting Delphinidae than to those detected in Phocoenidae. This is the first time that CePVs were identified in free-ranging odontocetes from the Eastern Pacific, surprisingly in 30-year-old samples. These data further suggest a close and long-standing pathogen-host co-evolution, resulting in different lineages of CePVs.


Assuntos
Golfinho Nariz-de-Garrafa , Chordopoxvirinae , Toninhas , Poxviridae , Animais , Golfinho Nariz-de-Garrafa/genética , Cetáceos , Chordopoxvirinae/genética , DNA Topoisomerases/genética , DNA Polimerase Dirigida por DNA/genética , Peru/epidemiologia , Filogenia , Toninhas/genética , Poxviridae/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Microbiology (Reading) ; 168(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178719

RESUMO

In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.


Assuntos
Golfinho Nariz-de-Garrafa , Golfinhos Comuns , Animais , Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/microbiologia , Clostridiales , Golfinhos Comuns/genética , Fusobactérias , Conteúdo Gastrointestinal , Heme , Mioglobina/genética , Filogenia , RNA Ribossômico 16S/genética , Vitamina B 12 , Vitaminas
8.
PLoS One ; 17(8): e0272345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001538

RESUMO

Following the 2010 Deepwater Horizon disaster and subsequent unusual mortality event, adverse health impacts have been reported in bottlenose dolphins in Barataria Bay, LA including impaired stress response and reproductive, pulmonary, cardiac, and immune function. These conditions were primarily diagnosed through hands-on veterinary examinations and analysis of standard diagnostic panels. In human and veterinary medicine, gene expression profiling has been used to identify molecular mechanisms underlying toxic responses and disease states. Identification of molecular markers of exposure or disease may enable earlier detection of health effects or allow for health evaluation when the use of specialized methodologies is not feasible. To date this powerful tool has not been applied to augment the veterinary data collected concurrently during dolphin health assessments. This study examined transcriptomic profiles of blood from 76 dolphins sampled in health assessments during 2013-2018 in the waters near Barataria Bay, LA and Sarasota Bay, FL. Gene expression was analyzed in conjunction with the substantial suite of health data collected using principal component analysis, differential expression testing, over-representation analysis, and weighted gene co-expression network analysis. Broadly, transcript profiles of Barataria Bay dolphins indicated a shift in immune response, cytoskeletal alterations, and mitochondrial dysfunction, most pronounced in dolphins likely exposed to Deepwater Horizon oiling. While gene expression profiles in Barataria Bay dolphins were altered compared to Sarasota Bay for all years, profiles from 2013 exhibited the greatest alteration in gene expression. Differentially expressed transcripts included genes involved in immunity, inflammation, reproductive failure, and lung or cardiac dysfunction, all of which have been documented in dolphins from Barataria Bay following the Deepwater Horizon oil spill. The genes and pathways identified in this study may, with additional research and validation, prove useful as molecular markers of exposure or disease to assist wildlife veterinarians in evaluating the health of dolphins and other cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa , Golfinhos Comuns , Poluição por Petróleo , Animais , Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/metabolismo , Perfilação da Expressão Gênica/veterinária , Golfo do México , Humanos , Poluição por Petróleo/efeitos adversos
9.
Sci Rep ; 12(1): 6980, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618794

RESUMO

One of the most studied aspects of animal communication is the acoustic repertoire difference between populations of the same species. While numerous studies have investigated the variability of bottlenose dolphin whistles between populations, very few studies have focused on the signature whistles alone and the factors underlying differentiation of signature whistles are still poorly understood. Here we describe the signature whistles produced by six distinct geographical units of the common bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea and identify the main determinants of their variability. Particularly, the influence of the region (proxy of genetic distance), the geographic site, and the environmental (sea bottom-related) and demographical (population-related) conditions on the acoustic structure of signature whistles was evaluated. The study provides the first evidence that the genetic structure, which distinguishes the eastern and western Mediterranean bottlenose dolphin populations has no strong influence on the acoustic structure of their signature whistles, and that the geographical isolation between populations only partially affected whistle variability. The environmental conditions of the areas where the whistles developed and the demographic characteristics of the belonging populations strongly influenced signature whistles, in accordance with the "acoustic adaptation hypothesis" and the theory of signature whistle determination mediated by learning.


Assuntos
Golfinho Nariz-de-Garrafa , Acústica , Comunicação Animal , Animais , Golfinho Nariz-de-Garrafa/genética , Aprendizagem , Vocalização Animal
10.
Mol Ecol ; 31(8): 2223-2241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146819

RESUMO

Heterogeneous seascapes and strong environmental gradients in coastal waters are expected to influence adaptive divergence, particularly in species with large population sizes where selection is expected to be highly efficient. However, these influences might also extend to species characterized by strong social structure, natal philopatry and small home ranges. We implemented a seascape genomic study to test this hypothesis in Indo-Pacific bottlenose dolphins (Tursiops aduncus) distributed along the environmentally heterogeneous coast of southern Australia. The data sets included oceanographic and environmental variables thought to be good predictors of local adaptation in dolphins and 8081 filtered single nucleotide polymorphisms (SNPs) genotyped for individuals sampled from seven different bioregions. From a neutral perspective, population structure and connectivity of the dolphins were generally influenced by habitat type and social structuring. Genotype-environment association analysis identified 241 candidate adaptive loci and revealed that sea surface temperature and salinity gradients influenced adaptive divergence in these animals at both large- (1000 km) and fine-scales (<100 km). Enrichment analysis and annotation of candidate genes revealed functions related to sodium-activated ion transport, kidney development, adipogenesis and thermogenesis. The findings of spatial adaptive divergence and inferences of putative physiological adaptations challenge previous suggestions that marine megafauna is most likely to be affected by environmental and climatic changes via indirect, trophic effects. Our work contributes to conservation management of coastal bottlenose dolphins subjected to anthropogenic disturbance and to efforts of clarifying how seascape heterogeneity influences adaptive diversity and evolution in small cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Ecossistema , Genômica , Salinidade , Temperatura
11.
Mol Ecol ; 30(19): 4642-4659, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289192

RESUMO

Many marine species exhibit fine-scale population structure despite high mobility and a lack of physical barriers to dispersal, but the evolutionary drivers of differentiation in these systems are generally poorly understood. Here we investigate the potential role of habitat transitions and seasonal prey distributions on the evolution of population structure in the Indo-Pacific bottlenose dolphin, Tursiops aduncus, off South Africa's coast, using double-digest restriction-site associated DNA sequencing. Population structure was identified between the eastern and southern coasts and correlated with the habitat transition between the temperate Agulhas (southern) and subtropical Natal (eastern) Bioregions, suggesting differentiation driven by resource specializations. Differentiation along the Natal coast was comparatively weak, but was evident in some analyses and varied depending on whether the samples were collected during or outside the seasonal sardine (Sardinops sagax) run. This local abundance of prey could influence the ranging patterns and apparent genetic structure of T. aduncus. These findings have significant and transferable management implications, most importantly in terms of differentiating populations inhabiting distinct bioregions and seasonal structural patterns within a region associated with the movement of prey resources.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Golfinho Nariz-de-Garrafa/genética , Ecossistema , Estações do Ano , Análise de Sequência de DNA , África do Sul
12.
Genomics ; 113(5): 2925-2933, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166750

RESUMO

Cetaceans have evolved elongated soft-tissue flipper with digits made of hyperphalangy. Cetaceans were found to have 2-3 more alanine residues in Hoxd13 than other mammals, which were suggested to be related to their flipper. However, how Hoxd13 regulates other genes and induces hyperphalangy in cetaceans remain poorly understood. Here, we overexpressed the bottlenose dolphin Hoxd13 in zebrafish (Danio rerio). Combined with transcriptome data and evolutionary analyses, our results revealed that the Wingless/Integrated (Wnt) and Hedgehog signaling pathways and multiple genes might regulate hyperphalangy development in cetaceans. Meanwhile, the Notch and mitogen-activated protein kinase (Mapk) signaling pathways and Fibroblast growth factor receptor 1 (Fgfr1) are probably correlated with interdigital tissues retained in the cetacean flipper. In conclusion, this is the first study to use a transgenic zebrafish to explore the molecular evolution of Hoxd13 in cetaceans, and it provides new insights into cetacean flipper formation.


Assuntos
Golfinho Nariz-de-Garrafa , Peixe-Zebra , Animais , Evolução Biológica , Golfinho Nariz-de-Garrafa/genética , Cetáceos/genética , Proteínas Hedgehog/genética , Peixe-Zebra/genética
13.
Genes (Basel) ; 12(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919966

RESUMO

The bottlenose dolphin (Tursiops truncatus) belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T. truncatus T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3' end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes. We have analyzed the relevant mature transcripts from two subjects. The simultaneous availability of rearranged T cell receptor α (TRA) and TRB cDNA from the peripheral blood of one of the two specimens, and the human/dolphin amino acids multi-sequence alignments, allowed us to calculate the most likely interactions at the protein interface between the alpha/beta heterodimer in complex with major histocompatibility class I (MH1) protein. Interacting amino acids located in the complementarity-determining region according to IMGT numbering (CDR-IMGT) of the dolphin variable V-alpha and beta domains were identified. According to comparative modelization, the atom pair contact sites analysis between the human MH1 grove (G) domains and the T cell receptor (TR) V domains confirms conservation of the structure of the dolphin TR/pMH.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos , Animais , Mapeamento Cromossômico , Feminino , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Alinhamento de Sequência , Microglobulina beta-2/metabolismo
14.
J Evol Biol ; 34(1): 16-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808214

RESUMO

Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Ecótipo , Especiação Genética , Animais , Oceano Atlântico , Golfinho Nariz-de-Garrafa/anatomia & histologia , Feminino , Masculino
15.
Curr Biol ; 30(15): 3024-3030.e4, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32589911

RESUMO

Cultural behavior, which is transmitted among conspecifics through social learning [1], is found across various taxa [2-6]. Vertical social transmission from parent to offspring [7] is thought to be adaptive because of the parental generation being more skilled than maturing individuals. It is found throughout the animal kingdom, particularly in species with prolonged parental care, e.g., [8, 9]. Social learning can also occur among members of the same generation [4, 10, 11] or between older, non-parental individuals and younger generations [7] via horizontal or oblique transmission, respectively. Extensive work on primate culture has shown that horizontal transmission of foraging behavior is biased toward species with broad cultural repertoires [12] and those with increased levels of social tolerance [13, 14], such as great apes. Vertical social transmission has been established as the primary transmission mechanism of foraging behaviors in the Indo-Pacific bottlenose dolphin (Tursiops aduncus) population of Shark Bay, Western Australia [6, 9, 15, 16]. Here, we investigated the spread of another foraging strategy, "shelling" [17], whereby some dolphins in this population feed on prey trapped inside large marine gastropod shells. Using a multi-network version of "network-based diffusion analysis" (NBDA), we show that shelling behavior spreads primarily through non-vertical social transmission. By statistically accounting for both environmental and genetic influences, our findings thus represent the first evidence of non-vertical transmission of a foraging tactic in toothed whales. This research suggests there are multiple transmission pathways of foraging behaviors in dolphins, highlighting the similarities between cetaceans and great apes in the nature of the transmission of cultural behaviors. VIDEO ABSTRACT.


Assuntos
Comportamento Animal/fisiologia , Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/psicologia , Comportamento Alimentar/fisiologia , Comportamento Social , Aprendizado Social/fisiologia , Rede Social , Animais , Feminino , Masculino , Austrália Ocidental
16.
Sci Rep ; 10(1): 4752, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179865

RESUMO

Nucleic acid-derived indices such as RNA/DNA ratios have been successfully applied as ecophysiological indicators to assess growth, nutritional condition and health status in marine organisms given that they provide a measure of tissue protein reserves, which is known to vary depending on changes in the environment. Yet, the use of these biochemical indices on highly mobile large predators is scarce. In this study, we tested the applicability of using nucleic acids to provide insights on the ecophysiological traits of two marine mammal species (common bottlenose dolphins and short-finned pilot whales) and explored potential related factors (species, sex, season, and residency pattern), using skin tissue (obtained from biopsy darts) of apparently healthy and adult free-ranging animals. Significantly higher RNA/DNA ratios were obtained for bottlenose dolphins (p < 0.001), and for visitor pilot whales when compared with resident pilot whales (p = 0.001). No significant changes were found between the sexes. Based on the percentile approach, the samples contain individuals in a general good condition (as the 10th percentile is not closer to the mean than the 75th percentile), suggesting that the studied region of Macaronesia may be considered an adequate habitat. The combination of this effective tool with genetic sexing and photographic-identification provided an overall picture of ecosystem health, and although with some limitations and still being a first approach, it has the applicability to be used in other top predators and ecosystems.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/fisiologia , Ecossistema , Baleias Piloto/genética , Baleias Piloto/fisiologia , África do Norte , Animais , Oceano Atlântico , DNA/genética , Feminino , Cadeia Alimentar , Masculino , RNA/genética , Estações do Ano
17.
Proc Natl Acad Sci U S A ; 116(30): 15122-15127, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285335

RESUMO

Telomere shortening to a critical length can trigger aging and shorter life spans in mice and humans by a mechanism that involves induction of a persistent DNA damage response at chromosome ends and loss of cellular viability. However, whether telomere length is a universal determinant of species longevity is not known. To determine whether telomere shortening can be a single parameter to predict species longevities, here we measured in parallel the telomere length of a wide variety of species (birds and mammals) with very different life spans and body sizes, including mouse (Mus musculus), goat (Capra hircus), Audouin's gull (Larus audouinii), reindeer (Rangifer tarandus), griffon vulture (Gyps fulvus), bottlenose dolphin (Tursiops truncatus), American flamingo (Phoenicopterus ruber), and Sumatran elephant (Elephas maximus sumatranus). We found that the telomere shortening rate, but not the initial telomere length alone, is a powerful predictor of species life span. These results support the notion that critical telomere shortening and the consequent onset of telomeric DNA damage and cellular senescence are a general determinant of species life span.


Assuntos
Longevidade/genética , Encurtamento do Telômero , Telômero/ultraestrutura , Animais , Golfinho Nariz-de-Garrafa/genética , Senescência Celular , Charadriiformes/genética , Elefantes/genética , Falconiformes/genética , Cabras/genética , Humanos , Camundongos , Análise de Regressão , Rena/genética , Especificidade da Espécie
18.
J Hered ; 110(6): 662-674, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211393

RESUMO

Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.


Assuntos
Golfinho Nariz-de-Garrafa , Ecossistema , Animais , Biodiversidade , Golfinho Nariz-de-Garrafa/classificação , Golfinho Nariz-de-Garrafa/genética , DNA Mitocondrial , Variação Genética , Genética Populacional , Modelos Teóricos , Filogenia , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
19.
PLoS One ; 14(4): e0215020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990845

RESUMO

A case of intergeneric hybridization in the wild between a female bottlenose dolphin (Tursiops truncatus) and a short-beaked common dolphin (Delphinus delphis), considered members of 'vulnerable' and 'endangered' subpopulations in the Mediterranean, respectively, by the International Union of Conservation of Nature is described in this paper. The birth of the hybrid was registered in the Bay of Algeciras (southern Spain) in August 2016, and the animal has been tracked on frequent trips aboard dolphin-watching platforms. This unique occurrence is the result of an apparent ongoing interaction (10 years) between a female bottlenose dolphin and common dolphins. The calf has a robust body with length similar to Tursiops, while its lateral striping and coloration are typical of Delphinus. It displays the common dolphin's 'criss-cross' pattern. However, the thoracic patch is lighter than in D. delphis and its dorsal area is light grey, with a 'V' shape under the dorsal fin. This paper also provides a comprehensive mini-review of hybridizations of T. truncatus with other species.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Quimera/genética , Golfinhos Comuns/fisiologia , Hibridização Genética , Animais , Golfinho Nariz-de-Garrafa/genética , Golfinhos Comuns/genética , Feminino , Masculino
20.
Chemosphere ; 225: 139-149, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30870631

RESUMO

Adverse effects of exposure to persistent organic pollutants (POPs) threaten the maintenance of odontocete populations. In southern Brazil, coastal bottlenose dolphins from the Laguna Estuarine System (LES) and Patos Lagoon Estuary (PLE) were sampled using remote biopsies during the winter and summer months. Levels of bioaccumulated POPs were measured in the blubber. The activities of glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also quantified, as were the mRNA transcript levels of aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT), cytochrome P450 1A1-like (CYP1A1), metallothionein 2A (MT2A), GST-π, GPx-4, GR, interleukin 1 alpha (IL-1α), and major histocompatibility complex II (MHCII) in the skin. In general, levels of POPs were similar among sites, sexes, ages and seasons. For most animals, total polychlorinated biphenyl (ΣPCBs) levels were above the threshold level have physiological effects and pose risks to cetaceans. The best-fitting generalized linear models (GLMs) found significant associations between GR, IL-1α and GPx-4 transcript levels, SOD and GST activities, and total polybrominated diphenyl ether (ΣPBDEs) and pesticide levels. GLMs and Kruskal-Wallis analyses also indicated that there were higher transcript levels for most genes and lower GST activity in the winter. These results reinforce the need to consider the influence of environmental traits on biomarker values in wildlife assessments.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Golfinho Nariz-de-Garrafa/metabolismo , Monitoramento Ambiental/métodos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Biópsia , Brasil , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...